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Dense CRF
Zisha Zhong

In image segmentation, a random field I = {I1, I2, · · · , IN} corresponds to the set of all image pixels i ∈ V = {1, 2, · · · , N}.
each pixel i is associated with a finite set of possible labels L = {l1, l2, · · · , lL} modeled by a variable Xi ∈ L, Ii is the
color vector of pixel i and Xi is the label assigned to pixel i. A conditional random field (I,X) is characterized by a Gibbs
distribution: P (X|I) = 1

Z(I) exp
{
−
∑

c∈CG φc (Xc|I)
}

, where G = (V, E) is a graph on X and each clique c in a set of
cliques CG in G induces a potential φc. The Gibbs energy of a labeling x ∈ LN is E (x|I) =

∑
c∈CG φc (xc|I). The maximum

a posteriori (MAP) labeling of the random field is x∗ = argmaxx∈LN P (x|I).
In the fully connected pairwise CRF model, G is a complete graph on X and CG is the set of all unary and pairwise cliques.

The corresponding Gibbs energy is

E (x|I) =
N∑
i=1

ψu (xi) +
∑
i<j

ψp (xi, xj)


ψp (xi, xj) = µ (xi, xj)

[
wb exp

(
−|pi − pj |

2α2
− |Ii − Ij |

2β2

)
+ ws exp

(
−|pi − pj |

2γ2

)]
where ψu (·) is the unary potential describes the cost of the pixel assigning the corresponding label, ψp (·) is the pairwise

potential which encourages similar pixels to have the same label assignments. µ (xi, xj) is a label compatibility function which
introduces a penalty for nearby similar pixels that are assigned different labels. ws and wb are the spatial kernel weight and
bilateral kernel weight, respectively. α, β, and γ are the kernel prameters.

Based on the mean field approximation, the DenseCRF can be efficiently solved by an iterative message passing algorighm
for approximate inference. Detail procedure and derivation is refered to DenseCRF.

Instead of computing the exact distribution P (X), the mean field approximation computes a factored distribution Q (X) that
minimizes the KL-divergence D (Q (X) ‖P (X|I)) among all distributions Q that can be expressed as a product of independent
marginals,

P (X) =
1

Z (X)
P̃ (X) =

1

Z (X)
exp {−E (X)} = 1

Z (X)
exp

−
N∑
i=1

ψu (xi)−
∑
i<j

ψp (xi, xj)


Q (X) =

∏
i

Qi (Xi) = Q1 (X1)Q2 (X2) · · ·QN (XN )

Note that the Qi (Xi) is a probility distribution, then we

Qi (Xi) ≥ 0
L∑

l=1

Qi (Xi) = 1

From the KL-divengence as follows:

D (Q‖P ) =
∑
x

Q (x) log

(
Q (x)

P (x)

)
=

∑
x

Q (x) logQ (x)−
∑
x

Q (x) logP (x)

=
∑
x

Q (x) logQ (x)−
∑
x

Q (x) log

(
P̃ (x)

Z

)
=

∑
x

Q (x) logQ (x)−
∑
x

Q (x) log P̃ (x) +
∑
x

Q (x) logZ

=
∑
x

Q (x) logQ (x)−
∑
x

Q (x) log P̃ (x) + logZ

=
∑
x

Q (x) logQ (x)−
∑
x

Q (x) log P̃ (x) + Const
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We fixed other variables and solve one variable, say Qi (Xi), then we have

D (Q‖P ) =
∑
x

Q (x) logQ (x)−
∑
x

Q (x) log P̃ (x)

= D1 −D2

D1 =
∑
x

Q (x) logQ (x)

=
∑
x−i

∑
xi

Q (x−i)Qi (xi) logQ (x−i)Qi (xi)

=
∑
x−i

∑
xi

Q (x−i)Qi (xi) logQ (x−i) +
∑
x−i

∑
xi

Q (x−i)Qi (xi) logQi (xi)

=
∑
x−i

Q (x−i) logQ (x−i)
∑
xi

Qi (xi) +
∑
xi

Qi (xi) logQi (xi)
∑
x−i

Q (x−i)

=
∑
x−i

Q (x−i) logQ (x−i) +
∑
xi

Qi (xi) logQi (xi)

= Const1 +
∑
xi

Qi (xi) logQi (xi)

D2 =
∑
x

Q (x) log P̃ (x)

= −
∑
x−i

∑
xi

Q (x−i)Qi (xi)E (x)

= −
∑
xi

Qi (xi)
∑
x−i

Q (x−i)

ψu (xi) +
∑
j 6=i

ψp (xi, xj) +
∑
k,k 6=i

ψu (xk) +
∑
j 6=k

ψp (xk, xj)


= −

∑
xi

Qi (xi)
∑
x−i

Q (x−i)

ψu (xi) +
∑
j 6=i

ψp (xi, xj)


−
∑
xi

Qi (xi)
∑
x−i

Q (x−i)

∑
k,k 6=i

ψu (xk) +
∑
j 6=k

ψp (xk, xj)


= −

∑
xi

Qi (xi)
∑
x−i

Q (x−i) [ψu (xi)]−
∑
xi

Qi (xi)
∑
x−i

Q (x−i)

∑
j 6=i

ψp (xi, xj)


−
∑
x−i

Q (x−i)

∑
k,k 6=i

ψu (xk) +
∑
j 6=k

ψp (xk, xj)


= −

∑
xi

Qi (xi)ψu (xi)−
∑
xi

Qi (xi)
∑
x−i

Q (x−i)
∑
j 6=i

ψp (xi, xj)

= −
∑
xi

Qi (xi)ψu (xi)−
∑
xi

Qi (xi)
∑
j 6=i

EUj∼Qj
ψp (xi, Uj)

Then the Lagrange equations is

L = D (Q‖P ) +
N∑
i=1

(
λi

[∑
xi

Qi (xi)− 1

])
then set the gradient w.r.t Qi (xi) to zero, as

∂L
∂Qi (xi)

= logQi (xi) + 1

+ψu (xi) +
∑
j 6=i

EUj∼Qj [ψp (xi, Uj)]

+λi

= 0
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let

Kl = ψu (xi = l) +
∑
j 6=i

EUj∼Qj
[ψp (xi = l, Uj)]

logQi (xi = l) = −1− λi −Kl

Qi (xi = l) = exp (−1− λi) exp (−Kl)

then

Qi (xi = 1) = exp (−1− λi) exp (−Kl)

Qi (xi = 2) = exp (−1− λi) exp (−K2)

...
Qi (xi = L) = exp (−1− λi) exp (−KL)

then

1 =
∑
xi

Qi (xi = l) = exp (−1− λi)
L∑

l=1

exp (−Kl)

then

exp (−1− λi) =
1∑L

l=1 exp (−Kl)

Qi (xi = l) = exp (−1− λi) exp (−Kl)

=
exp (−Kl)∑L
l=1 exp (−Kl)

=
1

Zi
exp

−ψu (xi = l)−
∑
j 6=i

EUj∼Qj [ψp (xi = l, Uj)]


Zi =

L∑
l=1

exp

−ψu (xi = l)−
∑
j 6=i

EUj∼Qj
[ψp (xi = l, Uj)]


On the other hand, we have

ψp (xi, xj) = µ (xi, xj)
K∑

m=1

w(m)k(m) (fi, fj)

then we have

Qi (xi = l) =
1

Zi
exp

−ψu (xi)−
∑
j 6=i

EUj∼Qj

[
µ (l, Uj)

K∑
m=1

w(m)k(m) (fi, fj)

]
=

1

Zi
exp

−ψu (xi)−
K∑

m=1

w(m)
∑
j 6=i

EUj∼Qj

[
µ (l, Uj) k

(m) (fi, fj)
]

=
1

Zi
exp

−ψu (xi)−
K∑

m=1

w(m)
∑
j 6=i

L∑
l′=1

Qj (l
′)µ (l, l′) k(m) (fi, fj)


=

1

Zi
exp

−ψu (xi)−
L∑

l′=1

µ (l, l′)

K∑
m=1

w(m)
∑
j 6=i

k(m) (fi, fj)Qj (l
′)




